Trypanosome MTR4 is involved in rRNA processing

نویسندگان

  • Marina Cristodero
  • Christine E. Clayton
چکیده

The yeast putative RNA helicase Mtr4p is implicated in exosome-mediated RNA quality control in the nucleus, interacts with the exosome, and is found in the 'TRAMP' complex with a yeast nuclear poly(A) polymerase (Trf4p/Pap2p or Trf5p) and a putative RNA-binding protein, Air1p or Air2p. Depletion of the Trypanosoma brucei MTR4-like protein TbMTR4 caused growth arrest and defects in 5.8S rRNA processing similar to those seen after depletion of the exosome. TbNPAPL, a nuclear protein which is a putative homolog of Trf4p/Pap2p, was required for normal cell growth. Depletion of MTR4 resulted in the accumulation of polyadenylated rRNA precursors, while depletion of TbNPAPL had little effect. These results suggest that polyadenylation-dependent nuclear rRNA quality control is conserved in eukaryotic evolution. In contrast, there was no evidence for a trypanosome TRAMP complex since no stable interactions between TbMTR4 and the exosome, TbNPAPL or RNA-binding proteins were detected.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing.

The essential RNA helicase, Mtr4, performs a critical role in RNA processing and degradation as an activator of the nuclear exosome. The molecular basis for this vital function is not understood and detailed analysis is significantly limited by the lack of structural data. In this study, we present the crystal structure of Mtr4. The structure reveals a new arch-like domain that is specific to M...

متن کامل

Structural insights into the interaction of the nuclear exosome helicase Mtr4 with the preribosomal protein Nop53.

The nuclear exosome and the associated RNA helicase Mtr4 participate in the processing of several ribonucleoprotein particles (RNP), including the maturation of the large ribosomal subunit (60S). S. cerevisiae Mtr4 interacts directly with Nop53, a ribosomal biogenesis factor present in late pre-60S particles containing precursors of the 5.8S rRNA. The Mtr4-Nop53 interaction plays a pivotal role...

متن کامل

Elucidating the role of C/D snoRNA in rRNA processing and modification in Trypanosoma brucei.

Most eukaryotic C/D small nucleolar RNAs (snoRNAs) guide 2'-O methylation (Nm) on rRNA and are also involved in rRNA processing. The four core proteins that bind C/D snoRNA in Trypanosoma brucei are fibrillarin (NOP1), NOP56, NOP58, and SNU13. Silencing of NOP1 by RNA interference identified rRNA-processing and modification defects that caused lethality. Systematic mapping of 2'-O-methyls on rR...

متن کامل

Tri-snRNP-associated proteins interact with subunits of the TRAMP and nuclear exosome complexes, linking RNA decay and pre-mRNA splicing

Nuclear RNA decay factors are involved in many different pathways including rRNA processing, snRNA and snoRNA biogenesis, pre-mRNA processing, and the rapid decay of cryptic intergenic transcripts. In contrast to its yeast counterpart, the mammalian nuclear decay machinery is largely uncharacterized. Here we report interactions of several putative components of the human nuclear RNA decay machi...

متن کامل

The Exosome Is Recruited to RNA Substrates through Specific Adaptor Proteins

The exosome regulates the processing, degradation, and surveillance of a plethora of RNA species. However, little is known about how the exosome recognizes and is recruited to its diverse substrates. We report the identification of adaptor proteins that recruit the exosome-associated helicase, Mtr4, to unique RNA substrates. Nop53, the yeast homolog of the tumor suppressor PICT1, targets Mtr4 t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007